
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??–??, 1993
c© 1993 Kluwer Academic Publishers – Manufactured in The Netherlands

EuLisp in Education

RUSSELL BRADFORD (rjb@maths.bath.ac.uk)

University of Bath, UK

DAVID DEROURE (D.C.DeRoure@soton.ac.uk)

University of Southampton, UK

Keywords: Education, Lisp, object-oriented programming, concurrent processing, lan-
guage design

Abstract. We present our experience with EULISP as a teaching language, focussing
on the level of the language which was specifically designed for this purpose (level-0).
EULISP has been used in undergraduate and postgraduate teaching since 1990, in lectures
and laboratories, where in many cases it has replaced Scheme or Common Lisp. It
has been used extensively in programming courses, parallelism courses, as a vehicle for
advanced courses in symbolic computing and programming language design; it has also
been used as a platform for final year undergraduate projects. This experience has
demonstrated that EULISP is well suited to teaching and far reaching in its capabilities:
it supports the relevant concepts in a consistent and versatile framework, so that the
language serves to facilitate the educational process. The discussion is illustrated with
examples, and where appropriate we draw a comparison with the Lisp dialects used
previously in these courses.

1. Introduction

The EULISP language design process has been progressing for several years,
and during this time the reference implementation developed at the Univer-
sity of Bath, UK, has tracked the evolving definition [4]. The availability
of the interpreter has enabled the language to be evaluated as a platform
for teaching, as well as for research and applications development; this
experience has then been fed back into the design process.

Lisp frequently features in undergraduate courses, often as a vehicle for
teaching other material. The authors have been involved in many such
courses. Prior to the availability of a EULISP interpreter, several Lisp di-
alects had been used; these included Standard Lisp, LISP/VM, Scheme
and Common Lisp. Level-0 of EULISP was specifically designed with a
view to teaching, and was adopted experimentally by the authors when
an implementation became available in 1990. This level is roughly compa-
rable to Scheme with the addition of an integrated object system (single



2 BRADFORD AND DEROURE

inheritance),1 modules and support for concurrency.

EULISP has now been used across a spectrum of courses in four insti-
tutions, including courses on programming, parallelism, symbolic comput-
ing, programming language design and artificial intelligence. This paper
presents our experience of using EULISP in teaching, and compares it with
our experience of Scheme [10] and Common Lisp [12]. Section 2 describes
a ‘programming paradigms’ course which was originally based on Scheme,
section 3 presents a course on parallelism using the ‘concurrency toolbox’
of EULISP, section 4 describes a programming language design course; other
courses are discussed in section 5. We conclude with some comments on
implementations in section 6 and some final remarks.

2. Programming

In a course designed to introduce a variety of programming paradigms,
it is convenient to use a single language which provides natural support
for the various styles; it can be argued that nearly any language could be
used, but clearly some languages are more suitable than others and will
facilitate rather than impede the educational process. Scheme is chosen
for this role in the classic text Structure and Interpretation of Computer
Programs [1], which provides an excellent introduction to programming
in models supporting referential transparency, data abstraction, mutable
state, message passing and streams, as well as issues in language design
and implementation.

EULISP has also been used in this role, supporting a programming course
which follows up an introductory programme based on Standard ML. The
primary objective of the course is to introduce techniques for managing
the complexity of programs which are larger in size than the introductory
examples, reflecting the typical programming task of the individual pro-
grammer. An adjacent course addresses methods of large-scale software
design and engineering.

The course was originally based on [1] but has evolved to accommodate
the addition of new items to the syllabus. The major addition is object-
oriented programming, while the other significant changes result from a
‘spiral approach’ to teaching programming techniques for window systems
and for distributed systems; we believe these classes of problems to be
sufficiently important to warrant first-class status in the core syllabus for
event-driven programming and programming with threads. This philosophy
leads to a further, more pervasive, change because concurrency issues are

1One of the authors has been heard to call it Scheme++-, because it is Scheme++

without full continuations.



EULISP IN EDUCATION 3

now discussed throughout the course.

The current course syllabus is:

1. Programming in a functional style;

2. Handling state and changes to state;

3. Object-oriented programming;

4. Stream-oriented programming;

5. Event-driven programming;

6. Programming with threads.

The course makes full use of EULISP’s features at level-0 of the language
definition. To address software systems of significant complexity, the mod-
ule system is used to construct the components of an evolving system; this
approach enables existing components to be provided to the students, who
can then create their own modules to integrate with these. Ultimately,
the software consists of the modules provided plus those programmed by
the students using the different techniques introduced during the course,
forming a relatively sophisticated software system. These techniques are
discussed in turn in the following sections.

2.1. Programming without side effects

Since the students have already worked in SML, this section of the course
doubles as an introduction to the syntax of EULISP and the use of the EULISP

environment. Initially all data values are numbers, and the concepts of
generic functions and multimethods are introduced. This is then extended
to user-defined classes (structures) and inheritance.

The typical example for this material is the introduction of a new class
which can be handled by generic arithmetic functions, for example rational
numbers (which we call fractions to distinguish from the existing rational
number class). One module provides the implementation of fractions, ex-
porting the constructor and accessor functions for the <fraction> class;
alternative implementations are possible, where the fraction may be re-
duced to its lowest terms at construction time or at access time. This
module is imported by a second fraction arithmetic module which provides
methods on the addition, subtraction, multiplication, division, equality and
comparison operations (see Figure 1). An application requiring fractions
can then simply import the fraction arithmetic module.

The use of a Lisp1 after a course based on SML provides a natural
progression, hence EULISP and Scheme are attractive choices. The strength



4 BRADFORD AND DEROURE

(defmodule fraction-arithmetic

(import (fraction-implementation1 eulisp-level-0)

syntax (eulisp-level-0))

(defmethod = ((a <fraction>) (b <fraction>))

(and (= (num a) (num b)) (= (denom a) (denom b))))

(defmethod binary* ((a <fraction>) (b <fraction>))

(make-fraction (* (num a) (num b)) (* (denom a) (denom b))))

)

Figure 1: Part of the fraction arithmetic module

of EULISP in this context is the provision of a data abstraction mechanism
whereby user-defined ‘types’ (classes) are identical in use to those provided
by the system; this simplicity is not evident in Scheme or CLOS.

2.2. Introducing state

The slots in the structures introduced above are immutable: either ob-
jects are created with the slots initialised, or the constructor function as-
signs values to the slots—in both cases the slot values do not change once
set. To provide the facility to modify their values the sole function that
need be introduced is setter (this function is also used to update struc-
tures based on cons cells). Figure 2 illustrates part of the classic bank
account program, where an account is created by (make <account>) and
has an initial balance of zero; deposit increases the balance, returning the
new value.

There is a particular elegance to the Scheme solution, where closures
provide a primitive mechanism for capturing state and controlling access
to it; this style of solution is viable in EULISP too, but for simplicity and
consistency we adopt objects as the sole repositories of state—the object-
system is seen as the mechanism for handling the intellectual complexity
of state in our programs.

2.3. Object-oriented programming

At this stage the major language features to support object-oriented
programming have already been introduced. To establish the concepts, the
inheritance mechanism is discussed (this is single inheritance at level-0)
and examples making more sophisticated use of inheritance are presented.



EULISP IN EDUCATION 5

(defmodule bank-account
(import (eulisp-level-0) syntax (eulisp-level-0))

(defstruct <account> () ((balance accessor balance initform 0)))

(defgeneric deposit ((ac <account>) (x <number>)))

(defmethod deposit ((ac <account>) x)
(let ((new-balance (+ (balance ac) x)))

((setter balance) ac new-balance)
new-balance))

)

Figure 2: Part of the bank account module

Figure 3 illustrates part of an example based on a blocks world, with an
abstract class <block> and methods added to generic-write to illustrate
class precedence.

(defstruct <block> () ((colour))) ;abstract class

(defstruct <sphere> <block>
((diameter accessor sphere-diameter)))

(defstruct <cube> <block> ((side accessor cube-side)))

(defgeneric volume ((b <block>)))
(defmethod volume ((b <cube>)) (expt (cube-side b) 3))

(defmethod generic-write ((b <block>) s)
(print ’block s))

(defmethod generic-write ((b <cube>) s)
(print ’cube s)
(call-next-method))

Figure 3: Part of the blocks module

Message-passing as a paradigm is also discussed here, where it can be de-
scribed in terms of messages between real-world objects. A correspondence
between messages and generic function calls is established, and this would
be an appropriate point to introduce closures as repositories of state, and
the setq special form to mutate bindings; these techniques can be used
to control access to shared bindings, providing a mechanism for creating



6 BRADFORD AND DEROURE

contours within the module boundary.

2.4. Stream-oriented programming

The powerful combination of standard interfaces and a flexible means of
composition of components is exemplified by Unix.2 The illusion of indi-
vidual data items flowing along channels between black boxes (c.f., Unix

pipes) can be implemented using lists, or using streams as in Scheme (where
the second argument to cons is delayed and the evaluation of stream ele-
ments is memoized). It is possible to write generic code which will work
with various implementations of streams; Figure 4 illustrates part of the
definition of generic head and tail functions.

(defstruct <stream> () ())

(defstruct <empty-stream> <stream> ())

(defstruct <stream-pair> <stream>
((head accessor stream-head)
(tail accessor stream-tail)))

(defgeneric head (s))
(defmethod head ((s <list>)) (car s))
(defmethod head ((s <stream-pair>)) (stream-head s))

(defgeneric tail (s))
(defmethod tail ((s <list>)) (cdr s))
(defmethod tail ((s <stream-pair>)) (force (stream-tail s)))

Figure 4: Part of a generic streams implementation

The implementation of the dataflow illusion using lists is flawed in that it
requires the stream to be finite in length and no data appears at the output
until all the input data has arrived. Delayed evaluation is demand-driven
in nature and overcomes these deficiencies, accommodating infinite streams
(and streams which may contain elements which cannot be computed);
however, this implementation is still problematic when interfacing to real
data streams. Therefore actual input–output streams are also introduced
in this section; we adopt the EULISP I/O model which supports user-defined
streams, and enables stream processing elements to be plugged together in
an arbitrary manner to construct more complex streams.

The multiple inheritance mechanism of CLOS provides a powerful means

2
Unix is a trademark of Unix Systems Laboratories, in the USA and other countries.



EULISP IN EDUCATION 7

of constructing a versatile input–output streams system [8]. At EULISP

level-0 we are restricted to single inheritance. We can use this to simulate
multiple inheritance by performing a second generic-function-call on proto-
typical stream properties stored in the slots of stream objects. This serves
as a good example of single versus multiple inheritance.

2.5. Handling exceptions

Some problems contain ‘exceptional’ situations and it is appropriate that
the programmer writes code which reflects this, using EULISP’s condition
system with user-defined conditions; in these programs, the programmer
will arrange both to signal and handle the conditions. In general, the
program may also handle conditions raised by the EULISP system itself in
response to the occurrence of exceptional situations. In the absence of
user-defined handlers, a default handler will take appropriate action.

Figure 5 shows a simple handler for a read-eval-print loop in an embed-
ded interpreter. The application of the user’s generic-eval function (see
section 4) to the input expression occurs within the dynamic scope of the
enclosing with-handler form; should any conditions be raised during that
application, the handler accepts them and performs a non-local exit from
the enclosing block form. The other options for the handler would be to
call the resume continuation, or simply to return and thus decline to handle
the condition.

(defun rep (v)
(format t "~a~%> " v)
(rep (block k

(with-handler
(lambda (condition resume) (return-from k ’error))
(generic-eval (read (standard-input-stream))

global-environment)))))

Figure 5: Read-eval-print loop with trivial error handler

This style of condition handling is not provided in Scheme, but can be
supported.

2.6. Event-driven programming

Use of the condition system introduces the notions of dynamic extent and
the single thread of control being interrupted by exceptional events occur-
ring asynchronously. Building on these ideas, we can introduce the idea of
a program whose normal mode of operation is to respond to asynchronous



8 BRADFORD AND DEROURE

events in its environment.

To do this, we introduce the wait construct, which provides a generic
interface to blocking operations. wait is provided as a standard abstraction
for blocking on asynchronous events; the user can add methods for any ob-
jects, though the EULISP definition only specifies wait methods for streams
and threads. Given an input stream as argument, wait returns true as
soon as data becomes available on that stream (i.e., an input operation
will not block), else if the timeout period expires it returns false. Figure 6
illustrates the use of wait in an event loop, where the object system can
be used to control the relationships between different types of events.

(while (wait stream timeout)
(generic-event-handler (read-event stream)))

(defmethod generic-event-handler ((k <keypress-event>)) ...)

Figure 6: Fragment of an event-driven program

This construct can support non-deterministic input–output operations
when provided with a collection of streams; however, collections are not
supported in level-0 of EULISP.

2.7. Threads

The final paradigm is programming with multiple threads of control.
This is a natural extension of the previous material, where the idea of
external events now includes events associated with other threads executing
asynchronously. The use of EULISP to teach parallelism is discussed in the
following section.

Neither Scheme nor Common Lisp support multiple threads of control as
part of the standard languages; however, the EULISP model can be simulated
in Scheme, and Common Lisp implementations often provide appropriate
facilities (such as stack groups).

3. Parallelism

EULISP has been used successfully as a component of both undergraduate
and postgraduate courses on parallel processing. A course on parallelism
should ideally contain some practical exercises—actually trying to program
in parallel is the best way of getting across to the student the difficulties
inherent in the subject. However, not many classes have access to a true
parallel machine, thus we must simulate the process in some fashion by



EULISP IN EDUCATION 9

scheduling threads on a single processor. The threads mechanism in EULISP

is designed so that the user is unaware how many actual processors are
running, or how the threads are scheduled on the available processors (some
weak promises are made in the definition, but also see [6]). So the user must
write code that has no such built-in assumptions, encouraging portability
of code, and flexibility of programming style.

In using EULISP we have the opportunity to program using threads and
binary semaphores (named locks). From these low-level constructs student
assignments are to implement higher level abstractions (see [2] for exam-
ples). To make a counting semaphore from a binary semaphore involves
the student recognising that there are several issues at stake: the mutual
exclusion on the counter; the problem of how and when to suspend a pro-
cess that fails to decrement the counter; the question of non-determinism
in reawakening of processes, and so on.

Students must program without using the knowledge of the particular
system the code may run on: it may be a multiprocessor or a uniprocessor,
and the latter may be using run-to-completion or time-slicing to schedule
threads. This ensures that they fully appreciate the more subtle problems
that may arise, particularly due to interleaving of control. For instance,
does it make any difference if the two starred lines in the code for the
counting semaphore (Figure 7) are swapped? To determine the answer
requires some detailed thought.

Building on this, it is a natural step to use counting semaphores (pack-
aged as a module) to implement a bounded buffer producer–consumer sys-
tem, or as a way to break the deadlock in the Dining Philosophers problem.
The student soon discovers that using bare semaphores is not a very conve-
nient or easy way to program, and that a higher-level way of programming
(for example, using monitors) is much better, as well as being less error-
prone.

After having written the Dining Philosophers problem using semaphores
(Figure 8) the student can consider rewriting the code in terms of, say,
monitors, at which point the student can appreciate the distinction be-
tween synchronisation and mutual exclusion (these are well separated in a
monitor, but are generally implemented in identical ways when using just
semaphores, leading to confusion of the issue at stake). Also, using moni-
tors, the student can see their relative grain of control in comparison with
semaphores: the trivial solution of Dining Philosophers using one or two
large monitors does not work, or at best over-constrains the actions of the
philosophers (typically, such attempted solutions have a philosopher being
stopped from picking up a fork if any other philosopher is trying to get a
fork). The fine-grained nature easily available from a semaphore must be
balanced against the clarity of use of a monitor. This, again, illustrates



10 BRADFORD AND DEROURE

(defmodule csem (import (eulisp-level-0) syntax (eulisp-level-0))

(defstruct csem ()
((sem initform (make-lock) ;access to the csem

reader csem-sem)
(count initform 0 initarg count ;the count

accessor csem-count)
(suspend-sem initform (lock (make-lock)) ;block on this

reader csem-suspend-sem)
(suspend-count initform 0 ;number waiting

accessor csem-suspend-count))
constructor (make-csem count))

(defun cwait (csem)
(let ((sem (csem-sem csem)))
(lock sem) ;get control of the csem
(let ((s (csem-count csem)))
(cond ((> s 0) ;room to move

((setter csem-count) csem (- s 1))
(unlock sem)) ;release the csem

(t ;must suspend yourself
((setter csem-suspend-count) csem ;one more
(+ (csem-suspend-count csem) 1))

(unlock sem) ;release counting sem
(lock (csem-suspend-sem csem))))))) ;suspend yourself

(defun csignal (csem)
(let ((sem (csem-sem csem)))
(lock sem) ;get the counting semaphore
(cond ((> (csem-suspend-count csem) 0) ;someone is waiting

((setter csem-suspend-count) csem ;one less now
(- (csem-suspend-count csem) 1))
(unlock (csem-suspend-sem csem)) ;unblock someone *
(unlock sem)) ;release the csem *

(t ;no-one waiting
((setter csem-count) csem
(+ (csem-count csem) 1))
(unlock sem))))) ;release the csem

(export make-csem cwait csignal)

)

Figure 7: Counting Semaphores using Binary Semaphores



EULISP IN EDUCATION 11

(defmodule dinphilsem (import (eulisp-level-0 csem)
syntax (eulisp-level-0))

(defconstant no_phils 5)
(defconstant count 20) ;each phil to eat 20 times

(defun phil (p n) ;phil p eating for the nth time
(let ((left p) (right (remainder (+ p 1) no_phils)))
(when (< n count)
(think p)
(get-ticket p) (get-fork left p) (get-fork right p)
(eat p n)
(drop-fork left p) (drop-fork right p) (return-ticket p)
(phil p (+ n 1)))))

(defconstant room-ticket (make-csem (- no_phils 1)))
(defconstant forks (make-vector no_phils))

(defun init-forks (n)
(when (>= n 0)
((setter vector-ref) forks n (make-lock))
(init-forks (- n 1))))

(defun think (p)
(format t "~s thinking " p)
(thread-reschedule)) ;allow some other action while thinking

(defun eat (p n)
(format t "~s eating (~a) " p n)
(thread-reschedule)) ;similarly while eating

(defun get-ticket (p) ;issue up to 4 tickets
(cwait room-ticket) ;controlled by the counting semaphore
(format t "~a enters room " p))

(defun return-ticket (p)
(format t "~a exits room " p)
(csignal room-ticket))

...

)

Figure 8: Dining Philosophers using Counting Semaphores



12 BRADFORD AND DEROURE

important points to be considered when writing parallel programs.

3.1. Data Parallel Processing

If writing MIMD programs as part of the undergraduate programme is
unusual, writing SIMD programs is relatively exotic. It is certainly a sub-
ject that is not dealt with in great detail, if at all, in many undergraduate
parallel processing textbooks. While FORTRAN-90 is an important case-
study under this heading, we also explore symbolic data-parallel problems
and the abstractions that have been developed, mainly in the Lisp com-
munity, such as Connection Machine Lisp [13] and Paralation Lisp [11].
Although we have developed a simpler model [9] and implementations of
both CM-Lisp and Paralation Lisp on top of that running on a MasPar, the
emphasis in teaching is on the Paralation model using a serial simulation.

Probably the most difficult notion to get across is that it is harmless to
compute a value that is not used, because it is not wasted computation
since it was carried out at the same time as useful values were computed.
An easier issue is the need for virtualization of the array once problem sizes
exceed physical resources. This is readily appreciated as a tedious matter
to implement, but a powerful abstraction once done.

A number of exercises have been worked through in this context, be-
ginning with numerical topics, such as relaxation (see Figure 9), conju-
gate gradient method, matrix multiplication and moving on to non-numeric
problems such as polynomial representation, (univariate) polynomial mul-
tiplication, connectionist simulations and classification.

The combined coverage of MIMD and SIMD within a single language
also provides a good springboard to the discussion of the simulation of
each paradigm in the other and a motivation for architecture independent
programming.

3.2. General Parallel Programming

The fact that we can employ all of these parallel models in a single lan-
guage, using modules to import those constructs we need, is particularly
convenient. For example, we have modules that implement Linda, moni-
tors, paralations, a Future-like class of objects, and an occam or CSP-style
(message passing on channels) language, and to use any of these is simply
a matter of importing the module. This lets us contemplate the question of
choosing the appropriate method for the solution of a particular problem,
and also opens the way to mixed-paradigm solutions. For example, if we
decide that, say, the first phase of a problem would work best using Linda,
while the second would benefit from the use of paralations, we can do this



EULISP IN EDUCATION 13

(defun relax (grid eps)
(let* ((index (index grid))

;;boolean field indicating whether element is on boundary
(boundary (elwise (index) ...)))

(labels
((loop (old new)

(if (vref (lambda (x y) (or x y))
(elwise (old new) (< (abs (- old new)) eps)))

;;some points not yet converged
(let ((n (get N new ())) (s (get S new ()))

(e (get E new ())) (w (get W new ())))
(loop new
(elwise (new boundary n s e w)
(if boundary new (/ (+ n s e w) 4.0)))))

;;all points have converged
new)))

;;compute first iterate
(let ((n (get N grid ())) (s (get S grid ()))

(e (get E grid ())) (w (get W grid ())))
(loop grid
(elwise (grid boundary n s e w)
(if boundary grid (/ (+ n s e w) 4.0))))))))

Figure 9: Relaxation using paralations

in a single language, in a single program. Further, we are able to compare
solutions in different models directly, and transform from one to another.
We believe that the subject should be seen as a whole, not a series of com-
partmentalised ideas that stand in isolation, and the design of EULISP lets
us do this.

4. Language design

EULISP has also been used in a final-year course in programming language
design. The students already know the language from earlier courses, and
we can build on this to use EULISP in three new roles:

1. EULISP is a contemporary general-purpose language and as such pro-
vides a valuable case-study in language design, capturing a number of
important concepts in a consistent framework (for example, modules,
the object system, exceptions, threads and streams).

2. Like other LISP dialects, EULISP can be used to illustrate the tra-
ditional ‘metacircular’ LISP interpreter, and a correspondence estab-



14 BRADFORD AND DEROURE

lished between this and a simplified denotational semantics of the
language. As part of the case study, this approach is used to describe
the evolution of LISP (as discussed in [14]). EULISP affords two varia-
tions on the traditional approach: the interpreter can be presented as
a generic function, and it can be extended to include aspects of the
EULISP language, notably continuations and threads [5]. Part of the
interpreter is illustrated in Figure 10, where the if special form has
been parsed into a structure <if> with three slots: if-test, if-true
and if-false.

3. Building on the previous point, EULISP provides a powerful vehicle for
teaching issues in language design ([7] adopts a similar approach), as
well as a symbolic platform for prototyping little application-oriented
language systems. In conjunction with interpreter techniques, the
module system is used extensively in assembling a complete language
system: each component of the system generates an intermediate
program in a language L in the form of a module which imports the
implementation of L.

(defgeneric generic-eval (k exp env))

(defmethod generic-eval (k (exp <number>) env) (send k exp))

(defmethod generic-eval (k (exp <quotation>) env)
(send k (value exp)))

(defmethod generic-eval (k (exp <if>) env)
(generic-eval (lambda (v)

(generic-eval k
(if v (if-true exp) (if-false exp))
env))

(if-test exp)
env))

Figure 10: Fragment of generic eval

5. Other courses

5.1. Object-Oriented programming (advanced)

EULISP level-1 is used in an advanced object-oriented programming course
to illustrate a metaobject protocol, where it has replaced CLOS. The TELOS



EULISP IN EDUCATION 15

protocol is simultaneously at the heart of EULISP, and has a separate, in-
dependent, identity. There are many constructs in EULISP that rely on the
object system, but it is possible to extract that system and consider it as
an entity in its own right (this has been done through the reimplementa-
tion of TELOS in other languages, including Scheme and Common Lisp).
This orthogonality of design has allowed the development of a powerful
MOP independently of the rest of the language: the advantage of having
language-independent implementations enables us to discuss the protocol
in isolation, not relying on any particular language feature.

5.2. Computer Algebra

One of the classic applications of Lisp is computer algebra, and so EULISP

has been used in a computer algebra course. The object system again plays
an important part, as it can abstract away distracting details of some of the
algorithms. For example, a traditional way of implementing a polynomial
is to use a recursive list structure. We use a collection of macro definitions
for accessors to the polynomial structures, and many conds to determine
what part of the polynomial we are considering as we work our way down
the list (for example, leading coefficient, the degree in the first variable, the
reductum of the polynomial, and so on). In contrast, using TELOS we can
use classes for each different part of the polynomial, and use methods on
generic functions to isolate their functionalities. As a way of implement-
ing fast polynomial arithmetic the use of generic functions and structures
may not be the most efficient, but certainly they are an excellent way to
explain the algorithms. Again, the integration of system and user types in
TELOS provides a uniform interface for the user: the user can add appro-
priate methods to + (via the generic function binary+), facilitating natural
expressions such as (+ p q 1), where p and q are of class <polynomial>.

5.3. Projects

A number of final-year projects have been based on the EULISP platform,
including the following:

• Visual programming for EULISP. This is an X Windows System ap-
plication which enables the user to construct programs in a dataflow
notation with a graphical editor; the notation is loosely compatible
with ProGraph [15], which is an icon-based visual programming envi-
ronment with a programming model that shares much with EULISP.
The tool generates executable EULISP code. The consistent treatment
of objects in EULISP permits a very simple graphical syntax.



16 BRADFORD AND DEROURE

• EULISP editing environment. An application for OS/2 Presentation
Manager, this is an editor which has knowledge about standard EULISP

syntax but also accepts simple extensions to the standard syntax to
incorporate additional class information for bindings, arguments to
generic functions and some return values. The environment includes a
tool (nicknamed EuLint) for checking for consistency within a EULISP

application and another for filtering the extended syntax into stan-
dard EULISP code.

• Score representation languages. EULISP has been used to implement
simple languages for representing musical scores. These have been
used as the target of composition tools, and as the input to tools which
generate either MIDI data or source text for typesetting utilities.
EULISP provides a rich environment for construction and combination
of such tools, and this application is a good test of its novel event-
oriented features.

• User Guide to TELOS. A project to write a document that firstly gave
an overview of the TELOS MOP, and secondly showed how it could
(and in some ways, could not) be used to emulate the C++ style of
class definition and inheritance. The purpose behind this project was
twofold. On the one hand, the student was led by experimentation to
understand the MOP; on the other hand, the student was doing real
research by investigating the flexibility and extensibility of TELOS.

• A module browser. The first stage of this project involved using the
interface to gdbm implemented in FEEL to build a module database.
The second stage built a mode for GNU Emacs to browse the module
structures stored in the database communicating via a EULISP process.
This presented the user with a display modelled after the GNU Emacs
directory browser where each line corresponded to an expression in
the module. Selection of an item lead to its display in a new buffer
for editing and later storage. A similar mode was provided to edit
the module directives. This environment also supported consistency
checking in a similar manner to the EuLint program mentioned above.

6. Hardware platforms

The courses described above have been taught on four main platforms: Sun3
and SPARC under SunOS; 386 and 486 PCs under MS-DOS and OS2/V2;
Amiga. The primary EULISP implementation was FEEL [4]; we have also
used Aubrey Jaffer’s SCM and Scheme-to-C [3], with basic extensions for
EULISP level-0 compatibility.



EULISP IN EDUCATION 17

Inevitably the implementation of level-0 is more complex than Scheme,
but one of the goals of is that it should be implementable by students on
a reasonably short timescale. So far we have had good experiences with
implementing and porting level-0. The provision of interpreters for the
popular ‘home computers’ has enabled students to work on a wide variety
of platforms without suffering the constraints of larger Lisp systems.

7. Conclusion

One of the objectives of EULISP is to provide a teaching platform. We have
demonstrated through teaching a number of courses over a three year period
that EULISP performs this function well. Respect for the Scheme principles
of simplicity and orthogonality enables EULISP to be used unobtrusively in
teaching non-Lisp related material, and it lends itself equally to advanced
Lisp-based courses. We anticipate that EULISP will continue to be used and
expanded in this role, aided by an increasingly rich environment as more
tools are created.

In comparison with Scheme, the most significant increase in function-
ality provided by EULISP is the object system; modules, conditions and
threads are also used extensively in our teaching. These mechanisms are
provided without introducing excessive complexity which would impede the
educational process. We favour EULISP over Common Lisp for its layered
approach (providing level-0 as a small, well-defined and portable kernel),
its natural progression from functional languages (through being a Lisp1)
and the provision of the ‘concurrency toolbox’, and over CLOS for its
simple, integrated classes. We miss first-class continuations and multiple
inheritance, though these are needed only in advanced courses where we
can achieve them through embedded interpreters and EULISP level-1 re-
spectively.

Acknowledgements

The authors wish to thank colleagues and students involved in the following
computer science courses for allowing us to use them to test the evolving de-
sign of the EULISP language: C7 Lisp, C80 Applications of Logic, C85 Con-
current Programming, MSc in Computer Algebra (Bath); CM203 Compu-
tational Systems, CM333 Programming Language Design, CM358 Advanced
Lisp, CM364 Object-Oriented Programming and Systems CM366 Symbolic
Computation, CM367 Models of Programming (Southampton); Concurrent
Processing, Ph.D. programme (UPC Barcelona); Data Structures (War-
wick).



18 BRADFORD AND DEROURE

Considerable thanks to the authors of Structure and Interpretation for
their influential work. Keith Playford and Pete Broadbery implemented
FEEL. Neil Berrington performed the 386 port, and provided EULISP level-0
support on a variety of platforms.

References

1. Abelson, H and Sussman, G J with Sussman, J. Structure and Interpre-
tation of Computer Programs. MIT Press, Cambridge, Massachusetts
(1985).

2. Andrews, G A. Concurrent Programming: Principles and Practice.
Benjamin/Cummings, Redwood City, California (1991).

3. Bartlett, J F. Scheme->C a Portable Scheme-to-C Compiler. Research
Report 89 1, DEC Western Research Laboratory, Palo Alto, California
(January 1989).

4. Broadbery, P., et al. FEEL. Available by anonymous FTP from
pub/eulisp on ftp.bath.ac.uk (1992).

5. DeRoure, D C. QPL3—Continuations, Concurrency and Communica-
tion. Technical Report CSTR 90–20, Department of Electronics and
Computer Science, University of Southampton (1990).

6. DeRoure, D C and Padget, J. Guaranteeing Unpredictability. To
appear (1993).

7. Friedman, D P, Wand, M, and Haynes, C T. Essentials of Programming
Languages. MIT Press, Cambridge, Massachusetts (1992).

8. Keene, Sonya E. Object-Oriented Programming in Common Lisp:
A Programmer’s Guide to CLOS. Addison-Wesley, Reading, Mas-
sachusetts (1989).

9. Merrall, S and Padget, J A. Plural EULISP: A Primitive Symbolic Data
Parallel Model. LASC, 6, 1/2 (September 1993).

10. Rees, J A and Clinger, W. The revised3 report on the algorithmic
language Scheme. ACM Sigplan Notices, 21, 12 (December 1986) 37–
79.

11. Sabot, G W. The Paralation Model: Architecture Independent SIMD
Programming. MIT Press, Cambridge, MA (1988).



EULISP IN EDUCATION 19

12. Steele Jr, G L, Fahlman, S E, Gabriel, R P, Moon, D A, Weinreb, D L,
Bobrow, D G, DeMichiel, L G, Keene, S E, Kiczales, G, Perdue, C, Pit-
man, K M, Waters, R C, and White, J L. Common Lisp: The Language
(Second Edition). Digital Press, Bedford, Massachusetts (1990).

13. Steele Jr, G L and Hillis, W D. Connection Machine Lisp: Fine-Grained
Parallel Symbolic Processing. In ACM Conference on Lisp and Func-
tional Programming (1986) 279–297.

14. Steele Jr, G L and Sussman, G J. The Art of the Interpreter; or, The
Modularity Complex (Parts Zero, One, and Two). AI Memo 453, MIT
Artificial Intelligence Laboratory, Cambridge, Massachusetts (May
1978).

15. Szpakowski, M, Pietrzykowski, T, Laskey, J, Kilshaw, T, Eyre, P,
and Cox, P. Prograph Reference: A very high-level, pictorial, object-
oriented programming environment. TGS Systems, Halifax, Canada
(1989).


